Связь гравитационной постоянной, постоянной Хаббла и классического радиуса электрона

Last modified by Alexey Popov on 2021/11/09 18:22

{\frac  {1}{4\pi \varepsilon _{0}}}{\frac  {e^{2}}{m_{0}c^{2}}}
=\frac{1}{\exp(1)}\left(\frac{2h}{c^2}\frac{ G}{ H}\right)^{1\over 3}

\nabla \cdot \mathbf a = \pi^4\frac{\omega_n}{\rho_n}\rho_g

\nabla \cdot \mathbf w = 0

\nabla \times \mathbf a = - \frac{\partial \mathbf w}{\partial t}

\nabla \times \mathbf w = \frac{\omega_n}{\rho_n \, c^2}\rho_g\mathbf v + \frac{1}{c^2}\frac{\partial \mathbf a}{\partial t}

\mathbf Y = \frac{\omega_n}{\rho_n} \frac{q_1 Q_2}{R^2} = \left [ \frac{m^3}{kg \, s}\frac{kg^2}{s^2}\frac{1}{m^2}  \right ]

Tags:
Created by Alexey Popov on 2021/11/02 11:31