Корректный вывод уравнения Эйлера для сжимаемой невязкой жидкости

Last modified by Alexey Popov on 2019/06/27 19:29

L = \frac{1}{2}\rho (\mathbf v \cdot \mathbf v) - \rho c^2

\nabla L - \frac{d}{dt}\frac{\partial L}{\partial \mathbf v}  = 0

\frac{D\rho\mathbf v(t,\mathbf r(t))}{Dt} = \frac{\partial \rho\mathbf v}{\partial t} + (\mathbf v \cdot \nabla)\rho \mathbf v  = \rho\frac{\partial \mathbf v}{\partial t}+ \frac{1}{2}\rho \nabla (\mathbf v \cdot \mathbf v) -\rho(\mathbf v \times \boldsymbol\omega)    =\rho \mathbf a+ \frac{\partial \rho}{\partial t}\mathbf v

\rho\frac{\partial \mathbf v}{\partial t} + \frac{1}{2}\rho\nabla ( \mathbf v \cdot \mathbf v)= \rho \mathbf a+ \frac{\partial \rho\mathbf v}{\partial t} - \frac{1}{2}(\mathbf v \cdot \mathbf v)\nabla \rho  + \nabla \rho c^2

\frac{1}{c^2 }\frac{\partial \rho\mathbf v}{\partial t} =  \frac{1}{c^2 }\rho(\mathbf v \times \boldsymbol \omega)+ \frac{1}{2}\frac{(\mathbf v \cdot \mathbf v)}{c^2 }\nabla \rho  - \nabla \rho

\frac{\partial \mathbf v}{\partial t} + \frac{1}{2}\nabla ( \mathbf v \cdot \mathbf v)= \mathbf a+ \frac{1}{\rho }\frac{\partial \rho\mathbf v}{\partial t} - \frac{1}{\rho }\frac{\mathbf v \cdot \mathbf v}{2}\nabla \rho  + \frac{1}{\rho }\nabla \rho c^2

\frac{\partial \mathbf v}{\partial t} + \frac{1}{2}\nabla ( \mathbf v \cdot \mathbf v)- (\mathbf v \times \boldsymbol \omega) = \mathbf a+ \frac{1}{\rho }\frac{\partial \rho}{\partial t}\mathbf v- \frac{1}{2}\frac{1}{\rho }\nabla (\rho(\mathbf v \cdot \mathbf v))  + \frac{1}{\rho }\nabla \rho c^2


\frac{D\rho}{Dt} = \frac{\partial \rho}{\partial t} + \mathbf v \cdot \nabla\rho   = \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf v )


L = \rho (\boldsymbol \omega\cdot \mathbf v) - \rho  f c

\nabla L - \frac{d}{dt}\frac{\partial L}{\partial \mathbf v}  = 0

\nabla L = \nabla (\rho (\boldsymbol \omega\cdot \mathbf v)) - \nabla \rho  f c= \rho \nabla (\boldsymbol \omega\cdot \mathbf v) +  (\boldsymbol \omega\cdot \mathbf v)\nabla (\rho ) - \nabla \rho  f c

 \frac{d}{dt}\frac{\partial L}{\partial \mathbf v}  = \frac{D\rho\boldsymbol \omega}{Dt} = \rho\frac{D\boldsymbol \omega}{Dt} + \boldsymbol \omega\frac{D\rho}{Dt} = \rho\boldsymbol \epsilon + \boldsymbol \omega( \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf v ) )

 \rho \nabla (\boldsymbol \omega\cdot \mathbf v) +  2(\boldsymbol \omega\cdot \mathbf v)\nabla \rho  - 2\nabla \rho  f c - \rho \frac{\partial \boldsymbol \omega}{\partial t} \,  -\rho (\nabla \times \mathbf a) + \rho (\mathbf {v} \times \left(\nabla \times \boldsymbol \omega \right))  = 0  

 \nabla (\boldsymbol \omega\cdot \mathbf v) - \frac{\partial \boldsymbol \omega}{\partial t}  -\nabla \times \mathbf a + \mathbf {v} \times (\nabla \times \boldsymbol \omega )  =  f c \frac{2}{\rho} \nabla \rho -  \frac{2}{ \rho} \nabla \rho (\boldsymbol \omega\cdot \mathbf v)  


L = \rho (\mathbf r \cdot \mathbf v) - \rho  r c

\nabla L - \frac{d}{dt}\frac{\partial L}{\partial \mathbf v}  = 0

\nabla L = \nabla (\rho (\mathbf r \cdot \mathbf v)) - \nabla \rho  r c= \rho \nabla (\mathbf r \cdot \mathbf v) +  (\mathbf r \cdot \mathbf v)\nabla \rho  - \nabla \rho  r c

 \frac{d}{dt}\frac{\partial L}{\partial \mathbf v}  = \frac{D\rho\mathbf r }{Dt} = \rho\frac{D\mathbf r }{Dt} + \mathbf r \frac{D\rho}{Dt} = \rho\mathbf v  + \mathbf r ( \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf v ) )

\rho \nabla (\mathbf r \cdot \mathbf v) +  (\mathbf r \cdot \mathbf v)\nabla \rho  - \nabla \rho  r c - \rho\mathbf v = 0

\mathbf v  - \nabla (\mathbf r \cdot \mathbf v)  = -\frac{1}{ \rho}  r c \nabla \rho + \frac{1}{ \rho} (\mathbf r \cdot \mathbf v)\nabla \rho

Уравнение движения с учётом ускорения

L = \rho (\mathbf a \cdot \mathbf v) - \rho  a c

\nabla L - \frac{d}{dt}\frac{\partial L}{\partial \mathbf v}  = 0

\nabla L = \nabla (\rho (\mathbf a \cdot \mathbf v)) - \nabla \rho  a c= \rho \nabla (\mathbf a \cdot \mathbf v) +  (\mathbf a \cdot \mathbf v)\nabla \rho  - \nabla \rho  a c

 \frac{d}{dt}\frac{\partial L}{\partial \mathbf v}  = \frac{D\rho\mathbf a }{Dt} = \rho\frac{D\mathbf a }{Dt} + \mathbf a \frac{D\rho}{Dt} = \rho\mathbf j  + \mathbf a ( \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf v ) )

\mathbf j = \frac{\partial \mathbf a}{\partial t} + \frac{1}{2} \left ( \nabla \left(\mathbf {a} \cdot \mathbf {v} \right)\,+\,\mathbf {v} \left(\nabla \cdot \mathbf {a} \right) \,+\,\nabla \times \left(\mathbf {a} \times \mathbf {v} \right)  - \mathbf {a} \times \boldsymbol \omega-\mathbf {v} \times \left(\nabla \times \mathbf {a} \right) \right)

\frac{1}{2} \nabla (\mathbf a \cdot \mathbf v) - \frac{\partial \mathbf a}{\partial t}-\,\frac{1}{2}(\mathbf {v} \left(\nabla \cdot \mathbf {a} \right)) \,-\,\frac{1}{2}  (\nabla \times \left(\mathbf {a} \times \mathbf {v} \right))  + \frac{1}{2}  (\mathbf {a} \times \boldsymbol \omega)+\frac{1}{2}  (\mathbf {v} \times \left(\nabla \times \mathbf {a} \right))= -  \frac{1}{\rho} (\mathbf a \cdot \mathbf v)\nabla \rho +  \frac{1}{\rho}  \nabla \rho  a c


L = \frac{1}{2}\rho (\boldsymbol \omega \cdot \boldsymbol \omega) - \rho f^2

\frac{\partial L}{\partial \boldsymbol \phi} - \frac{d}{dt}\frac{\partial L}{\partial \boldsymbol \omega}  = 0

\frac{D\rho\boldsymbol \omega}{Dt} = \rho\frac{D\boldsymbol \omega}{Dt} + \boldsymbol \omega\frac{D\rho}{Dt} = \rho\boldsymbol \epsilon + \boldsymbol \omega( \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf v ) )

\boldsymbol \varepsilon =\frac{1}{2} \left (  \frac{\partial \boldsymbol \omega}{\partial t} + \nabla \left(\boldsymbol \omega \cdot \mathbf {v} \right)\,  + \nabla \times \mathbf a -\mathbf {v} \times \left(\nabla \times \boldsymbol \omega \right) \right)


\frac{D\rho(\mathbf v \cdot \mathbf v)}{Dt} =  \rho\frac{D(\mathbf v \cdot \mathbf v)}{Dt} + (\mathbf v \cdot \mathbf v)\frac{D\rho}{Dt} =  \rho\frac{\partial(\mathbf v \cdot \mathbf v)}{\partial t}  + \rho(\mathbf v \cdot \nabla (\mathbf v \cdot\mathbf v )) + (\mathbf v \cdot \mathbf v)\frac{D\rho}{Dt}

Tags:
Created by Alexey Popov on 2019/06/27 13:02