Квантовые уравнения Максвелла

Last modified by Alexey Popov on 2020/01/31 15:43

- i\nu\nabla^2\boldsymbol{\Psi} + i c(\nabla \times \boldsymbol{\Psi})=\frac{\partial \boldsymbol{\Psi}}{\partial t} +  (\mathbf v \cdot \nabla)\boldsymbol{\Psi}

\boldsymbol{\Psi} = \mathbf E - i\, c\, \mathbf B

\boldsymbol{\Psi}_P = \mathbf A - i\, \mathbf C

-  \frac{\nu}{c}\nabla^2\mathbf E + \nabla \times \mathbf E= - \frac{\partial \mathbf B}{\partial t} + (\mathbf v \cdot \nabla)\mathbf B

- \frac{\nu}{c}\nabla^2  \mathbf B +   \nabla \times \mathbf B=\frac{1}{c^2}\frac{\partial\mathbf E }{\partial t} +  \frac{1}{c^2}(\mathbf v \cdot \nabla)\mathbf E

Скалярные | кватернионные уравнения

- i\nu\nabla^2{\Psi} =\frac{\partial {\Psi}}{\partial t} +  \mathbf v \cdot \nabla{\Psi}

Re(\Psi^*\, i \nabla^2\Psi) = 0

Tags:
Created by Alexey Popov on 2020/01/30 15:44