Горизонт событий чёрной дыры с учётом максимальной плотности материи

Last modified by Alexey Popov on 2021/11/12 11:15

{\displaystyle r_{s}={\frac {2GM}{c^{2}}},}

\rho_n = \frac{M}{V}

\rho_n r_s^3 \frac{4}{3}\pi= M

{\displaystyle r_{s}=\frac{4}{3}\pi{\frac {2G \rho_n r_s^3}{c^{2}}},}

{\displaystyle \frac{1}{r_s^2}=\frac{4}{3}\pi{\frac {2G \rho_n }{c^{2}}},}

{\displaystyle r_s^2=\frac{3}{4\pi}{\frac {c^{2}}{ 2G \rho_n }},}

{\displaystyle r_s=\sqrt{\frac{3}{4\pi}{\frac {c^{2}}{ 2G \rho_n }}},} \sim 23\,170\,m

Tags:
Created by Alexey Popov on 2021/11/12 11:12